• 3 Posts
  • 17 Comments
Joined 10 months ago
cake
Cake day: January 5th, 2024

help-circle

  • A key list of compatible/incompatible components to look for:

    • GPU
    • Network Interfaces (Ethernet and Wi-Fi)
    • Audio Interfaces (not that much of an issue anymore)
    • Disks
    • Motherboards
    • CPU (excluding x86 ecosystem)
    • Peripherals

    The explanations for this are pretty long, but are meant to be fairly exhaustive in order to catch most if any pitfalls one could possibly encounter.

    GPU:

    A big one is the choice between AMD, Intel, and NVidia. I am going to leave out Intel for compute as I know little about the state it is in. For desktop and gaming usage, go with AMD or Intel. NVidia is better than it used to be, but still lags behind in proper Wayland support and the lack of in-tree kernel drivers still makes it more cumbersome to install and update on many distros whereas using an AMD or Intel GPU is fairly effortless.

    For compute, NVidia is still the optimal choice for Blender, Resolve, and LLM. Though that isn’t to say that modern AMD cards don’t work with these tasks. For Blender and Davinci Resolve, you can get them to use RDNA+ AMD cards through ROCm + HIP, without requiring the proprietary AMD drivers. For resolve especially, there is some serious setup involved, but is made easier through this flatpak for resolve and this flatpak for rocm runtime. ML tasks depend on the software used. For instance, Pytorch has alternate versions that can make use of ROCm instead of CUDA. Tools depending on Pytorch will often have you change the Pytorch source or you may have to manually patch in the ROCm Pytorch for the tool to work correctly on an AMD card.

    Additionally, I don’t have performance benchmarks, but I would have to guess all of these tasks aren’t as performant if compared to closely equivalent NVidia hardware currently.

    Network Interfaces:

    One section of hardware I don’t see brought up much is NICs (including the ones on the motherboard). Not all NICs play as nicely as others. Typically I will recommend getting Ethernet and Wireless network interfaces from Intel and Qualcomm over others like Realtek, Broadcom, Ralink/Mediatek. Many Realtek and Mediatek NICs are hit-or-miss and a majority of Broadcom NICs I have seen are just garbage. I have not tested AMD+Mediatek’s collaboration Wi-Fi cards so I can’t say how well they work.

    Bluetooth also generally sits into this category as well. Bluetooth provided by a reputable PCIe/M.2 wireless card is often much more reliable than most of the Realtek, Broadcom, Mediatek USB dongles.

    Audio Interfaces:

    This one isn’t as much of a problem as it used to be. For a lot of cards that worked but had many quirks using PulseAudio (a wide variety of Realtek on-board chipsets mainly), they tend to work just fine with Pipewire. For external audio interfaces: if it is compliant to spec, it likely works just fine. Avoid those that require proprietary drivers to function.

    Disks:

    Hard drives and SSDs are mostly fine. I would personally avoid general cheap-quality SSDs and those manufactured by Samsung. A lot of various SATA drives have various issues, though I haven’t seen many new products from reputable companies actually releasing with broken behavior as documented by the kernel. If you wish to take a detailed look of devices the kernel has restricted broken functionality on, here is the list.

    Additionally, drives may be one component beside the motherboard where you might actually see firmware updates for the product. Many vendors only release EXE files for Windows to update device firmware, but many nicer vendors actually publish to the LVFS. You can search if a vendor/device is supplied firmware here.

    Motherboards:

    In particular, motherboards are included mainly because they have audio chipsets and network interfaces soldered and/or socketed to them. Like disks, motherboards may or may not have firmware updates available in LVFS. However, most motherboard manufacturers allow for updating the BIOS via USB stick. Some laptops I have seen only publish EXE files to do so. For most desktop boards however, one should be able to always update the motherboard BIOS fine from a Linux PC.

    Some motherboards have quirky Secure Boot behavior that denies them being able to work on a Linux machine. Additionally some boards (mostly on laptops again) have either broken or adjustable power state modes. Those with adjustable allow for switching between Windows and standard-compliant modes.

    Besides getting a Framework laptop ‘Chromebook edition’, I don’t think there is much you will find for modern boards supporting coreboot or libreboot.

    CPUs:

    For your use case, this doesn’t really matter. Pretty much every modern x86 CPU will work fine on Linux. One only has to hunt for device support if you are running on ARM or RiscV. Not every kernel supports every ARM or RiscV CPU or SoC.

    Peripherals:

    Obviously one of the biggest factors for many new users switching to Linux is their existing peripherals that require proprietary software on Windows missing functionality or not working on Linux. Some peripherals have been reverse engineered to work on Linux (see Piper, ckb-next, OpenRazer, StreamController, OpenRGB).

    Some peripherals like printers may just not work on Linux or may even work better than they ever did on Windows. For problematic printers, there is a helpful megalist on ArchWiki.

    For any other peripherals, it’s best to just do a quick search to see if anyone else has used it and if problems have occurred.


  • Reading through the link chain, it seems the Western Digital drives being shipped in those laptops really should have never made it into consumers’ hands.

    The kernel argument nvme_core.default_ps_max_latency_us=5500 is being used to restrict the power state latency in order to keep the drive out of its lowest power state (because of course yet another cheaply-made device has terrible power state management).

    While most distros generally expect NVMe drive to not completely cease functioning while at idle (as should be expected really), AntiX is likely keeping the drive above its minimal power state. Whether this is intentional, unintentional, or from a lack of general power state management provided by the distro isn’t something I know. It would require some digging in the source tree for the distro most likely to find if there are any deliberate restrictions to power saving, especially regarding NVMe.


  • A couple things to check using a quick bash script:

    #!/usr/bin/env bash
    
    cd /sys/class/power_supply/BAT*/
    echo "Charge cycles: $(cat cycle_count)"
    printf '%s\0' 'Health: ' &
    bc <<< "scale=3; ($(cat charge_full) / $(cat charge_full_design)) * 100"
    

    That should print out the wear cycles the battery has endured and its reported capacity over design capacity. If your battery has less than 1000 cycles and the health reported from the battery is less than 80%, it might be best to contact Framework for warranty replacement as the battery is likely defective.


  • Just note that with Bambu printers about past data collection practices and their in general mid to atrocious after-sales support. If this doesn’t deter you, then go ahead and get one.

    I do a lot of my functional parts in ABS, ASA though printing such material may be difficult on an open-air machine. The two obvious choices will generally be PLA or PETG. PLA is one of the most common printed materials, and is fairly balanced in material strength. PETG parts are more likely to permanently deform heavily before fully snapping, as well as they have a but more temperature resistance than PLA. Additionally most PETG plastics hold up decently well to UV, often making them more suitable for parts that need to be outdoors.

    PLA takes not much consideration on surface to print, as most printers come with a smooth PEI build sheet by default. It will however need more cooling than printing with PETG at equivalent speeds. If you use a PEI sheet for PETG, make sure it is textured. You will destroy a smooth sheet if it doesn’t have some kind of release coating to lower its adhesive properties to PETG.

    There is no guarantee for spools of filament to actually arrive dry, so a filament dryer isn’t a bad idea. I don’t have any particular recommendations for a good filament dryer. I have a Filadryer S2 from Sunlu, but am not impressed by it.











  • The flatpak documentation has a semi-relevant page on setting up a flatpak repo utilizing gitlab pages and gitlab’s CI runners on a pipeline. Obviously, you’d need to substitute Gitlab Pages for a webserver of your choice and to port the CI logic over to Gitea Actions (ensuring your Gitea instance is setup for it).

    A flatpak repo itself is little more than a web server with a related GPG key for checking the signatures of assembled packages. The docs recommend setting up the CI pipeline to run less on-commit to the package repos and more on the lines of checking for available updates on interval, though I imagine other scenarios in a fully-controlled environment such as a selfhosted one might offer some flexibility.


  • As I am teaching myself right now maintainable selfhost setups using popular apps (admittedly with Kubernetes vs something minimal in functionality like Docker Desktop), there is a lot of complexity involved in getting these services both functional and maintainable while also having to consider the security implications of various setups.

    While I agree the concept of self-host is a good thing to advocate, I think the complexity and difficulty involved not just to do it, but to do it right is going to be a straight cliff of a learning curve for those not already technically inclined in databases, networking, and filesystems/block storage.

    Honestly, taking the burden of being IT for a reasonable subscription cost for your efforts is a better way to go, especially if the setup allows for expanding your offerings to other members in a localized community.