• agamemnonymous@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      21
      ·
      1 year ago

      An actual measured data point, as opposed to a randomly generated number. Also this principle applies specifically to the first digit. Overall the title is a complete mess.

      Basically, when you gather a bunch of data points about real world quantitative phenomena (e.g. town population, lake surface area, etc), you find this distribution curve of leading digits where 1 is something like 30% most frequent, gradually decreasing down to 9 being least frequent.

      This is called Benford’s Law, it’s basically an emergent property about how orders of magnitude work. It’s useful because you can use it to detect fake data, since if your data faker doesn’t know about it they’ll generate fake data that looks random but doesn’t follow this distribution.

  • themoonisacheese@sh.itjust.works
    link
    fedilink
    English
    arrow-up
    18
    ·
    1 year ago

    This is used to catch tax fraud. People who forge reciepts tend to use random numbers, so they stand out as outliers, and they get caught that way.

  • JCSpark@lemmy.ca
    link
    fedilink
    English
    arrow-up
    10
    ·
    1 year ago

    This is a bit weird. I was just listening to Infinity 2 today (great book. Totally recommend), and there’s a section where the characters use Benford’s Law to prove reality. I then had to look it up myself.

    Just a super weird coincidence…unless Lemmy is listening to me…

    • bane_killgrind@lemmy.ml
      link
      fedilink
      English
      arrow-up
      14
      arrow-down
      1
      ·
      1 year ago

      https://en.m.wikipedia.org/wiki/Benford's_law

      Look at the logarithmic scale. This law has to do with number sets in the wild, so apparently the scaling is flat over the set of data they examined. If you look at the distribution of the number sets over the logarithmic scale, they are evenly distributed. If you looked at the same numbers on a linear scale, they would become more and more sparse as they grow in size.

    • lunarul@lemmy.world
      link
      fedilink
      English
      arrow-up
      3
      ·
      1 year ago

      The distribution shown in this post is for base 10, but Benford’s Law includes distributions for other bases too. The wiki article linked in another comment goes into detail on that too.

    • davidgro@lemmy.world
      link
      fedilink
      English
      arrow-up
      2
      ·
      1 year ago

      The percentages change. At the lower end, in binary every number that isn’t 0 itself starts with a 1.

      This fact is actually used to save one bit in the format that computers usually use to store floating point (fractional instead of integer) numbers.